On the eve of Computex, Taiwan’s big showpiece event where PC makers roll out the latest and best implementations of Intel CPUs, mobile rival ARM is announcing its own big news with the unveiling of a new generation of ARM CPUs and GPUs. Official today, the ARM Cortex-A75 is the new flagship-tier mobile processor design, with a claimed 22 percent improvement in performance over the incumbent A73. It’s joined by the new Cortex-A55, which has the highest power efficiency of any mid-range CPU ARM’s ever designed, and the Mali-G72 graphics processor, which also comes with a 25 percent improvement in efficiency relative to its predecessor G71.
The efficiency improvements are evolutionary and predictable, but the revolutionary aspects of this new lineup relate to artificial intelligence: this is the first set of processing components designed specifically to tackle the challenges of onboard AI and machine learning. Plus, last year’s updates to improve performance in the power-hugry tasks of augmented and virtual reality are being extended and elaborated.
Before we dive into the detail of this year’s changes, it’s worth recapping what ARM does and why it’s important. This English company, now owned by Japan’s SoftBank, is responsible for designing the processor architecture of practically every mobile device — you’ll have heard of Qualcomm’s Snapdragon, Samsung’s Exynos, and Apple’s A-series of mobile chips, all of which are built using ARM’s instruction sets and based on ARM’s design blueprints. When we talk about the oncoming wave of mobile AI, mobile VR, and smartphones that can perform machine-learning tasks without sending them off to processor farms up in the cloud, developing the capabilities for those tasks starts with ARM.
ARM
The new Cortex-A75 and A55 are the first Dynamiq CPUs from ARM. Dynamiq is the branding chosen to describe a much more flexible set of design options for silicon vendors like Qualcomm. Where previously ARM allowed for designs that paired a cluster of so-called big CPUs (from its A7x class) and a matched number of little CPUs (from the A5x series), the new design makes it possible to spec a single, mixed-up cluster composed of both big and little CPUs, to a maximum of eight. Thus, chip makers can now have, for example, seven little A55 cores and just one big A75 one: for a favorable mix of long battery life, cost efficiency, and a high ceiling of single-threaded performance when it’s called for.